Novel Quantum Algorithms to Minimize Switching Functions Based on Graph Partitions
نویسندگان
چکیده
After Google reported its realization of quantum supremacy, Solving the classical problems with computing is becoming a valuable research topic. Switching function minimization an important problem in Electronic Design Automation (EDA) and logic synthesis, most solutions are based on heuristic algorithms computer, it good practice to solve this processer. In paper, we introduce new hybrid classic algorithm using Grover’s symmetric functions minimize small Disjoint Sum Product (DSOP) (SOP) for Boolean switching functions. Our method graph partitions arbitrary graphs regular graphs, which can be solved by Grover-based searching proposed. The Oracle built from implemented Lattice diagrams. It shown analytically verified simulations simulator that our methods find all these problems.
منابع مشابه
study of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Graph Orientation Algorithms to Minimize the Maximum Outdegree
This paper studies the problem of orienting all edges of a weighted graph such that the maximum weighted outdegree of vertices is minimized. This problem, which has applications in the guard arrangement for example, can be shown to be NP-hard generally. In this paper we first give optimal orientation algorithms which run in polynomial time for the following special cases: (i) the input is an un...
متن کاملSpeeding up Graph Algorithms via Switching Classes
Given a graph G, a vertex switch of v ∈ V (G) results in a new graph where neighbors of v become nonneighbors and vice versa. This operation gives rise to an equivalence relation over the set of labeled digraphs on n vertices. The equivalence class of G with respect to the switching operation is commonly referred to as G’s switching class. The algebraic and combinatorial properties of switching...
متن کاملSpan-Program-Based Quantum Algorithms for Graph Bipartiteness and Connectivity
Span program is a linear-algebraic model of computation which can be used to design quantum algorithms. For any Boolean function there exists a span program that leads to a quantum algorithm with optimal quantum query complexity. In general, finding such span programs is not an easy task. In this work, given a query access to the adjacency matrix of a simple graph G with n vertices, we provide ...
متن کاملProbabilistic Proximity Searching Algorithms Based on Compact Partitions
The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the elements at a fraction of the cost of the exact algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, materials & continua
سال: 2022
ISSN: ['1546-2218', '1546-2226']
DOI: https://doi.org/10.32604/cmc.2022.020483